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SUMMARY

Maladaptive responses to stress adversely affect
human behavior, yet the signaling mechanisms un-
derlying stress-responsive behaviors remain poorly
understood. Using a conditional gene knockout
approach, the a isoform of p38 mitogen-activated
protein kinase (MAPK) was selectively inactivated
by AAV1-Cre-recombinase infection in specific brain
regions or by promoter-driven excision of p38a
MAPK in serotonergic neurons (by Slc6a4-Cre or
ePet1-Cre) or astrocytes (by Gfap-CreERT2). Social
defeat stress produced social avoidance (a model
of depression-like behaviors) and reinstatement of
cocaine preference (a measure of addiction risk) in
wild-type mice, but not in mice having p38a MAPK
selectively deleted in serotonin-producing neurons
of the dorsal raphe nucleus. Stress-induced activa-
tion of p38a MAPK translocated the serotonin trans-
porter to the plasma membrane and increased the
rateof transmitter uptake at serotonergic nerve termi-
nals. These findings suggest that stress initiates a
cascade of molecular and cellular events in which
p38aMAPK induces a hyposerotonergic state under-
lying depression-like and drug-seeking behaviors.

INTRODUCTION

Stress has significant effects on mood and can act as a motiva-

tional force for decisive action, seeking food or reward, and

coping with novel environmental conditions. However, sustained

stress exposure can lead to maladaptive responses including

clinical depression, anxiety, and increased risk for drug addiction

(Bale and Vale, 2004; Krishnan and Nestler, 2008; Bruchas et al.,
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2010; Koob, 2008). Recent studies have proposed that the

dysphoric components of stress are coded in brain by cortico-

tropin releasing factor (CRF) and subsequent release of the

endogenous dynorphin opioid peptides in brain (Land et al.,

2008; Bruchas et al., 2010; Koob 2008). Systemic blockade of

these neural pathways prevents the aversive and proaddictive

effects of stress, but how these systems orchestrate affective

responses at the molecular and cellular levels remain

unresolved.

One group of signaling pathways involved in the cellular stress

response includes the family of mitogen-activated protein

kinases (MAPK). Using pharmacological approaches, p38

MAPK (also called SAPK, for stress-activated protein kinase)

activity has been identified as a critical mediator of stroke-

induced apoptosis, osmotic shock response, and in the regula-

tion of transcriptional pathways responsible for cell death and

differentiation (Raman et al., 2007; Coulthard et al., 2009).

Recently however, inhibition of p38 MAPK was also found to

block stress-induced behavioral responses including aversion

(Land et al., 2009; Bruchas et al., 2007) and to prevent reflex-

conditioned responses (Zhen et al., 2001). Although the cellular

andmolecular bases for these behavioral actions are not known,

one possible site of action is the serotonergic nuclei because this

transmitter has an established role in the regulation of mood

(Roche et al., 2003; Paul et al., 2011; Richardson-Jones et al.,

2010). The dorsal raphe nucleus (DRN) is the primary neuronal

source of serotonin, and DRN neurons send diffuse projections

to multiple forebrain and hindbrain structures that are critical

for regulating affective state (Land et al., 2009; Hensler 2006;

Zhao et al., 2007). The DRN is modulated by several afferent

systems (Wylie et al., 2010; Land et al., 2009; Scott et al.,

2005; Kirby et al., 2008), but how these inputs regulate serotonin

neurotransmission remains unclear, and little is known about the

essential signal transduction kinase cascades in the DRN that

regulate serotonergic output to ultimately control behavior.

In the DRN, we found that p38aMAPK expression was widely

distributed in tryptophan hydroxylase 2 (TPH) expressing cells,
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non-TPH cells, and astrocytes (Land et al., 2009). Several reports

have demonstrated that there is a high degree of coexpression

between the serotonin transporter (Slc6a4, SERT) and TPH posi-

tive neurons (MacGillivray et al., 2010; Lowry et al., 2008). Recent

studies have also determined that expression of the transcription

factor Pet1 is largely restricted to serotonergic (TPH-immunore-

active, ir) neurons (Scott et al., 2005; Liu et al., 2010). Thus, SERT

and Pet1 represent potentially useful markers for the discrimina-

tion of serotonergic neurons within the brain. Here, we used

a combination of conditional p38a MAPK null alleles generated

in serotonergic neurons or astrocytes to determine the effects

of p38a MAPK deletion in models of depression behaviors

including place aversion and social avoidance and of drug

addiction behaviors modeled by reinstatement of extinguished

cocaine place preference.

RESULTS

p38a MAPK in DRN Is Required for Behavioral
Responses to Stress
Since prior reports suggested that p38 MAPK is activated

during the stress response, we first determined if social defeat

stress (SDS) induces phosphorylation of p38 MAPK in the DRN.

Following a single, 20 min session of SDS, mice showed an

increase in phospho-p38 immunoreactivity (pp38-ir) in the

DRN (Figures 1A and 1A1). G protein coupled receptor activa-

tion can lead to p38 MAPK phosphorylation via recruitment of

arrestin-dependent pathways (Tan et al., 2009; Gong et al.,

2008), and activation of the dynorphin/kappa opioid receptor

(KOR) system was shown to increase pp38-ir by this mecha-

nism (Bruchas et al., 2006, 2007). Consistent with this concept,

the increase in pp38-ir caused by SDS was prevented by

blocking endogenous dynorphin activation of KOR with the

selective antagonist norbinaltorphimine (norBNI) (Figures 1A

and 1A1).

There are four isoforms of p38 MAPK: a, b, d, and g. p38a and

p38b are both expressed in neurons and glial cells, whereas

p38d and p38g are exclusively expressed in immune cell types

(Zhang et al., 2007; Zarubin and Han, 2005). Since the p38

isoforms share consensus phosphorylation sites and there are

no known isoform-selective phospho-antibodies, we used non-

phospho-selective, but isoform-selective antibodies in immuno-

precipitation approaches to determine the phosphorylation state

of each isoform. Agonist stimulation of KOR resulted in signifi-

cant (p < 0.05, t test) phosphorylation of the p38a, but not

p38b isoform (see Figure S1A available online) in HEK293 cells

expressing KOR-GFP and either FLAG-tagged p38a or p38b

isoforms. No difference in immunoprecipitation efficiency or iso-

form expression was observed (Figure S1B) as evidenced by

equal FLAG staining. Finally, using nucleus accumbens cell

lysates, we found that in vivo treatment with KOR agonist

increased pp38a-ir (Figure S1C). Together these data suggest

that KOR activation during stress exposure selectively increased

the phosphorylation of the a isoform of p38 MAPK.

To determine if p38a activation in DRNwas required for stress-

induced behavioral responses, we used a genetic approach to

selectively inactivate p38a MAPK in DRN cells. Using mice

with a floxed gene (Mapk14lox/lox) encoding p38aMAPK (Nishida
et al., 2004), local inactivation of p38a MAPK in the DRN was

achieved by stereotaxic injection of adeno-associated virus

serotype 1 vector encoding Cre recombinase (AAV1-CreGFP)

(Ahmed et al., 2004). These mice were also bred to carry a

Gt(ROSA)26Sor-YFP (R26-YFP) reporter cassette in which Cre-

mediated recombination of a transcriptional STOP promotes

YFP expression as a marker of Cre activity (Figure 1B). p38a-ir

was absent in AAV1-CreGFP transduced cells that coexpressed

the YFP reporter (Figure 1C). In contrast, injection of AAV1-

CreDGFP vector expressing an inactive, mutated form of the

Cre-recombinase (CreD) did not affect p38a MAPK expression

in DRN (Figure 1C).

Prior reports established that stress causes relapse to drug

seeking (Nestler and Hyman, 2010; Krishnan et al., 2007), and

in particular, social defeat stress (SDS) represents an ethologi-

cally relevant stressor for evoking dysphoria-like behavioral

states (Miczek et al., 2008). TheMapk14lox/lox mice were injected

in the DRN with AAV1-CreGFP to determine whether p38a

MAPKwas required for SDS induced reinstatement.We followed

this injection with a conditioning paradigm for cocaine place

preference (Figure 1D). Both AAV1-CreGFP and AAV1-CreDGFP

injected mice developed normal place preference to cocaine

(Figure 1E), suggesting that deletion of p38a in DRN cells does

not disrupt associative learning components required for initial

acquisition of cocaine place preference. We then extinguished

the conditioned preference by substituting saline for cocaine in

the drug-paired chamber (Figure 1D). After mice met extinction

criteria (%15% of their initial preference score; Figure 1E),

mice were exposed to social defeat stress (20 min session)

and then place preference was reassessed. Importantly, AAV1-

CreGFP-induced deletion of p38a in the DRN completely

blocked SDS-induced reinstatement of cocaine CPP, whereas

floxed p38a mice injected with the virus expressing the inactive

form of Cre recombinase still showed robust SDS-induced rein-

statement of cocaine CPP (Figure 1E). These data suggest that

expression of p38a in the DRN is required for stress-induced

reinstatement of reward seeking behavior.

To expand on this concept and to parallel other studies

showing that stress negatively modulates reward to initiate

the drive for reward seeking (Koob, 2008), we injected

Mapk14lox/lox (floxed p38a) mice with either AAV1-CreGFP or

AAV1-CreDGFP in either the DRN or nucleus accumbens

(NAc), and then assessed conditioned avoidance of a context

paired with an aversive stimulus. Since KOR activation results

from stress and is known to produce aversive behavioral

responses in stress-paired contexts (Land et al., 2008, 2009;

Bruchas et al., 2010; Carlezon et al., 1998; Shippenberg et al.,

1986) we conditioned mice with the KOR agonist U50,488

(2.5 mg/kg, i.p.) over 2 days and then assessed their avoidance

of the drug-paired context. AAV1-CreGFP injection in the DRN of

Mapk14lox/lox mice, but not the NAc, blocked conditioned place

aversion (Figure 1F). This result suggests that p38a MAPK in

the DRN is also required for stress-induced dysphoria-like avoid-

ance behavior.

Selective Disruption of p38a in 5HT Neurons
p38a MAPK is ubiquitously expressed in cells of DRN including

serotonergic and nonserotonergic neurons, aswell as astrocytes
Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc. 499



Figure 1. p38a Expression in the Dorsal Raphe Nucleus Is Required for Stress Behavior

(A) Representative low-power immunofluorescence images of social defeat stress induced pp38-ir (green) in TPH-ir cells (red) of the DRN. (A1) Quantification ±

SEM of pp38-ir in DRN from unstressed (naive), social defeat stress (SDS), and social defeat stress exposed norBNI (10mg/kg, i.p.) injectedmice (**p < 0.01, SDS

versus naive). Inset, representative black and white low power immunofluorescence images of social defeat stress induced pp38-ir, scale bar = 200 mm.

(B) Schematic of AAV1 induced cre-recombination of the floxed p38a MAPK allele and STOP sequence controlling Rosa26YFP gene expression.

(C) Representative images of pp38-ir (red) and YFP (green) fluorescence following AAV1-Cre-GFP or AAV1-DCre-GFP injection into the DRN. Mice were pre-

treated with KOR agonist (U50,488, 20 mg/kg, i.p, 20 min prior to perfusion). Images show that AAV-cre expressing cells lack pp38-ir, confirming effective

localized DRN p38a deletion in cells where Cre activity also promoted YFP expression by the Rosa reporter.

(D) Conditioning procedure for SDS induced reinstatement of cocaine seeking.

(E) Cocaine place preference scores, calculated as post-test minus pre-test on the cocaine-paired side, and SDS-induced reinstatement scores of extinguished

place preference in DRN-injected animals (n = 5–8; *p < 0.05 t test compared to AAV1-DCre). Bars represent means ± SEM.

(F) Preference scores (mean ± SEM) for conditioned place aversion to kappa opioid agonist U50,488 (2.5 mg/kg, i.p.) frommice injected with either AAV1cre-GFP

or AAV1Dcre-GFP into their DRN or nucleus accumbens (NAc) (*p < 0.05, AAV1cre-GFP versus AAV1Dcre-GFP; n = 8).

See also Figure S1.

Neuron

Deletion of p38a Produces Stress Resilience

500 Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc.



Neuron

Deletion of p38a Produces Stress Resilience
(Figure S2A). Since AAV1-CreGFP transduction provides

anatomical specificity but is not cell type specific, we crossed

the Mapk14lox/lox mice with mice expressing Cre-recombinase

under control of either the 5HT transporter gene Slc6a4Cre

(SERT-Cre) (Zhuang et al., 2005), the enhancer region of 5HT-

cell-type specific transcription factor Pet-1 (ePet1-Cre) (Scott

et al., 2005), or the estrogen receptor-inducible Cre variant under

control of the astrocyte selective glial fibrillary acidic protein

gene (GFAP-Cre-ERT2) (Hirrlinger et al., 2006) inducible Cre

mouse line (Figure 2A). Due to the potential for transient and vari-

able expression of promoter driven Cre in germ cells, males

carrying the Cre recombinase alleles had an inactive Mapk14

gene (Mapk14D/+), and they were crossed with females carrying

Mapklox/lox (see Figure S2B for breeding scheme and Table 1 for

abbreviations of each genotype used in this study). In addition, to

confirm that Cre-mediated recombination by Slc6a4-Cre, ePet1-

Cre, or Gfap-Cre-ERT2 were cell type specific, we also crossed

thesemice with theR26-YFP reporter mice (Srinivas et al., 2001).

We then used double immunofluorescence staining to detect

yellow fluorescent protein (YFP) and tryptophan hydroxylase 2

(TPH), the rate-limiting enzyme for serotonin synthesis in brain

and a marker for serotonergic neurons (Nakamura and Hase-

gawa, 2007). We observed a high level of TPH-ir and YFP coex-

pression in the DRN, but not in the cortex or hippocampus of

p38a CKOePet (Mapk14D/lox: ePet1-Cre) mice (Figures 2B and

S3A–S3H). Further, as would be predicted from the wide expres-

sion profile of SERT during neurodevelopment (Murphy and

Lesch, 2008), we visualized a high level of TPH-ir and YFP coex-

pression in the DRN (Figure 2C), but YFP expression was also

observed in cells of the cortex and hippocampus and thalamus

of p38aCKOSERT (Mapk14D/lox: Slc6a4-Cre) mice (Figure S3A).

Finally, p38aCKOGFAP (Mapk14D/lox: GFAP-CreERT2) mice

showed no YFP colocalization with TPH-ir neurons in the DRN,

but showed extensive YFP signal in cells of astrocytic

morphology throughout the brain including the DRN, thus estab-

lishing consistent cell-type selective Cre-recombinase activity

(Figure 2C).

The degree of p38a MAPK expression was also examined in

the DRN of conditional knockout (CKO) mice using antibodies

directed at p38a or phospho-p38 MAPK. p38aCKOePet mice

displayed significantly reduced p38a MAPK expression in

TPH-ir cells (ANOVA, Bonferroni post hoc, p < 0.001; Figures

2F and 2J) in contrast to p38a expression in wild-type mice

(Figure 2E). In p38a CKOSERT mice, p38a-ir in the DRN was

also significantly reduced in TPH-ir cells compared to the wild-

type mice (ANOVA, Bonferroni post-hoc, p < 0.001; Figures 2G

and 2J). Importantly, expression of TPH-ir was not altered in

any of the knockout mouse lines (Figures 2H, 2I, 2K, and 2L),

nor was p38a MAPK expression significantly altered in non-

TPH expressing cells of CKO mice (Figure 2M). Finally, we did

not observe compensatory changes in p38b MAPK expression

in DRN cells in any of the mouse lines (Figure S3I). To determine

if the active isoform of p38 MAPK was selectively disrupted

in TPH expressing cells, we injected mice with the KOR agonist

U50,488 and then stained for pp38-ir. In wild-type mice,

agonist stimulation of KOR increased pp38-ir in DRN, however

p38aCKOePet mice showed no increase in pp38-ir in DRN

following KOR stimulation (Figures 2K and 2L).
Serotonergic p38a Is Required for Stress-Induced
Avoidance Behavior
Previous reports have demonstrated that mice subjected to

defeat by an aggressor mouse show subsequent decreases in

motivation for social interaction that can be prevented by clini-

cally effective antidepressants (Nestler and Hyman 2010; Cao

et al., 2010; Berton et al., 2006; Avgustinovich and Kovalenko,

2005; Siegfried, 1985). Using this approach, we assessed the

role of p38a MAPK in stress-induced social avoidance. Previ-

ously unstressed mice readily explore and interact with a novel

male mouse in the social interaction chamber (Figures 3A and

3B). However, socially defeatedmice showed a significant social

avoidance (ANOVA, F(2,29) = 2.51, p<0.05,Bonferroni; Figure 3A).

Pretreatment with the KORantagonist norBNI (24 hr prior to SDS,

10 mg/kg, i.p) significantly blocked the SDS-induced avoidance

behavior (ANOVA, F(3,30) = 2.843, p < 0.05, Bonferroni). As ex-

pected, littermate control mice (Mapk14D/+: ePet1-Cre) showed

avoidance behavior following SDS, whereas p38a CKOePet

mice were resilient to the effects of social defeat and showed

significant reduction in the SDS-induced interaction deficit

(t test, p < 0.05; Figure 3B). Because social avoidance behavior

may also be considered to be an anxiety-like response, we deter-

mined if behavior in the elevated plus maze was also affected by

disruption of p38a MAPK in serotonergic neurons (Figure S4B).

Unexpectedly, there were no significant differences in the time

spent in the open arms of the maze by the p38aCKOePet, p38aC-

KOSERT, and littermate control groups (Figure S4B), suggesting

that the blockade of SDS-induced social avoidance caused by

serotonergic p38a MAPK deletion was not a consequence of

a generalized decrease in anxiety-like responses.

Avoidance behavior is a complex response known to be regu-

lated by serotonergic systems as well as other hormones and

neuropeptides (Bari et al., 2010; Eriksson et al., 2011; Cao

et al., 2010; Bromberg-Martin et al., 2010; Pamplona et al.,

2011). To determine if context-dependent avoidance requires

serotonergic p38a MAPK expression, we assayed conditioned

place aversion (CPA) to U50,488, a KOR agonist that acts

as a pharmacological stressor. KOR activation causes aversion

behavior in rodents in Pavlovian conditioning paradigms

(Shippenberg et al., 1986; Land et al., 2009). We conditioned

mice with U50,488 (2.5 mg/kg, i.p.) over 2 days and then as-

sessed their preference for the drug-paired context. As ex-

pected, wild-type and Mapk14D/lox mice showed significant

CPA to the drug-paired context (Figures 3C and 3D). In contrast,

mice lacking p38aMAPK in either their ePet-1 or SERT-express-

ing cells (p38aCKOePet or p38aCKOSERT, respectively) failed to

show significant place aversion (for p38aCKOePet, ANOVA,

F(2,19) = 5.626, p < 0.05 Bonferroni; for p38aCKOSERT, ANOVA,

F(2,32) = 4.193, p < 0.05 Bonferroni; Figures 3C and 3D). Since

previous studies have shown SERT is also expressed in astro-

cytes (Hirst et al., 1998; Bal et al., 1997; Pickel and Chan,

1999) and to further confirm 5HT neuronal selectivity of the

behavioral effects, we induced Cre activity by tamoxifen in

p38aCKOGFAP (Mapk14D/lox:Gfap-CreERT2) then assayed their

behavioral responses to KOR agonist. Although Cre activity

was confirmed in astrocytes of tamoxifen-treated p38aCKOGFAP

mice (Figure 2D), they still developed significant CPA (Figure 3E),

suggesting that aversion does not require p38a MAPK
Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc. 501



Figure 2. Cell Type Selective Deletion of p38a MAPK

(A) Schematic of cell type specific p38a deletion. Floxed p38a andROSAYFP reportermicewere crossed tomice expressingCre-recombinase under the control of

Pet1, serotonin transporter, or the tamoxifen inducible glial fibrillary acidic protein (GFAP) CreERT2 transgene. Representative images showing TPH-ir and YFP in

p38aCKOePet mice (B), p38aCKOSERT (C), and p38aCKOGFAP (D) mice. Insets show higher-power images with arrows directed toward yellow cells indicating

overlap of TPH/YFP expression. Representative images showing TPH and p38a-ir in wild-type (E), p38aCKOePet (F), and p38aCKOSERT (G). Representative

images fromwild-typemice showing the absence of phosphorylated p38MAPK (pp38-ir) following saline treatment (H) and increased pp38-ir following treatment

with U50,488 20 mg/kg, i.p., 20 min prior) (I). Insets show intact TPH labeling in the same fields.

(J) Quantitation of p38a-ir in TPH positive cells in the dorsal raphe nucleus. Data show a significant reduction in p38a expression in both p38a CKOePET and p38a

CKOSERT mice (***p < 0.001, ANOVA, Bonferroni).

(K) Representative images from in p38a CKOePET mice showing the absence of pp38-ir following saline treatment (K) and following treatment with U50,488 (L).

Insets show intact TPH staining.

(M) Quantitation of p38a-ir expressed in TPH-negative cells in the DRN. Data are representative of 4–8 animals per group.

See also Figure S3.
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Table 1. Mouse Cell Lines Generated

Official Strain Name Reference Shorthand Name Genotype

B6.129-Mapk14tm1.2Otsu Nishida et al., 2004 floxed p38a Mapk14lox/lox

p38a+/+ Mapk14+/+

B6.129-Tg(Slc6a4-cre)1Xz Zhuang et al., 2005 p38a CKOSERT Mapk14D/lox; Slc6a4Cre/+

p38aD/lox Mapk14D/lox

p38alox/+ Mapk14lox/+

SERT-Cre only Mapk14+/+: Slc6a4Cre/+

B6.129-Tg(ePet-cre)1Esd Scott et al., 2005 p38a CKOePet Mapk14D/lox: ePetCre

p38aD/lox Mapk14D/lox

p38alox/+ Mapk14lox/+

ePet-Cre only Mapk14+/+: ePetCre

B6.129-Tg(Gfap-creERT2)1Fki Hirrlinger et al., 2006 p38a CKOGFAP Mapk14lox/lox: GfapCre-ERT2

floxed p38a Mapk14lox/lox

B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J Srinivas et al., 2001 ROSA-YFP Rosa26EYFP/+ heterozygote as reporter

for Cre in genotypes above

B6.129S4-Meox2tm1(cre)Sor/J Tallquist and Soriano, 2000 Mox2-Cre As heterozygote to produce

null p38aD allele

B6.129(Cg)-Slc6a4tm1Kpl/J Bengel et al., 1998 Conventional SERT KO Slc6a4�/�
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expression in astrocytes. Furthermore, since place conditioning

requires locomotor activity for normal exploratory behavior and

aversive compounds such as KOR agonists can reduce locomo-

tion, we also measured locomotor activity in p38a CKOs and

controls. We did not observe any effect of genotype on basal

or U50,488-induced locomotor scores before or during condi-

tioning (Figure S4C), suggesting that the lack of context depen-

dent place aversion to a pharmacological stressor is not attribut-

able to a deficit in locomotor activity or lack of pharmacological

activation of KOR.

Serotonergic systems have been widely studied in models of

depression and many groups use forced swim stress (FSS) as

an animal model of stress-induced affect and for measuring

behavioral efficacy of anti-depressant-like compounds (Porsolt

et al., 1977). To determine if p38a MAPK deletion in SERT-ex-

pressing cells prevents swim stress-immobility, we exposed

mice to FSS and then measured their immobility during the first

trial andagain24hr later.p38aCKOSERTmiceshowedsignificantly

less immobility compared to control groups (Figure 3F; ANOVA,

F (2,15) = 8.924, p < 0.01 Bonferroni). Furthermore, since previous

reports have suggested that stress causes dynorphin-dependent

analgesia (McLaughlin et al., 2003), we determined if deletion of

p38a MAPK altered stress-induced analgesic responses.

Following swim stress, all control groups and p38aCKOSERT

mice showed equivalent and significant stress-induced analgesia

(Figure S4), suggesting that p38a MAPK deletion does not alter

stress-induced dynorphin release or KOR activation. Taken

together, these data indicate that p38a MAPK in serotonergic

neuronsplayacritical role in themodulationofaffectivebehavioral

responses including avoidance and stress-induced immobility.

p38a MAPK Deletion Blocks Social Defeat
Stress-Induced Reinstatement
Because negative affect and drug seeking responses share

common neural and molecular pathways, we next determined
if p38a MAPK deletion in serotonergic neurons prevents

stress-induced reinstatement of drug seeking. First, we used

immunohistochemistry to determine if SDS-induced increases

in pp38-ir were prevented in the CKO mice. Consistent with

previous results in this study, SDS did not cause an increase in

pp38-ir in TPH-ir cells in p38aCKOSERT or p38aCKOePet mice

(Figures 4A and S3J). In contrast, SDS increased pp38-ir in

TPH-ir cells of p38aCKOGFAP mice, further supporting selective

isolation of stress-induced p38a to serotonergic neurons (Fig-

ure S3J). Next we used a similar conditioning procedure as in

Figure 1 to determine if serotonergic p38aMAPKdeletion altered

cocaine place preference. All groups showed similar levels of

place preference for cocaine (Figure 4B), suggesting that

deletion of serotonergic p38a does not alter either the associa-

tive learning required for place preference or the rewarding

properties of cocaine. We then extinguished place preference

over 3 days, and mice that met extinction criteria were socially

defeated, then tested in the place preference apparatus. We

found that SDS caused reinstatement of cocaine place prefer-

ence in both wild-type and control Mapk14D/+ mice, but stress-

induced reinstatement was not evident in p38aCKOSERT or

p38aCKOePet mice (t test, p < 0.05 versus matched control;

Figure 4C). Finally, since cocaine injection (i.e., priming) is known

to initiate reinstatement to drug seeking by distinct mechanisms

(Thomas et al., 2008; Shaham and Hope, 2005), on the following

day mice that did not reinstate to stress were injected with

15 mg/kg of cocaine and retested for place preference. All

four groups of mice reinstated following a cocaine priming

injection (Figure 4D), suggesting that serotonergic p38a MAPK

deletion selectively alters only stress-induced modulation

of drug-seeking. In conclusion, these results implicate seroto-

nergic p38a MAPK in the regulation of affective state and show

that selective deletion of p38a MAPK in serotonergic cells

protects mice from stress-induced relapse of cocaine-seeking

behaviors.
Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc. 503



Figure 3. Negative Affective Behavior Requires Expression of p38a in Serotonergic Neurons

(A) Representative traces of mouse locomotion (red lines) in unstressed and social defeat stressed wild-type or mice lacking p38a in serotonergic neurons

(p38a CKOePet). Data show that SDS caused mice to retreat to zone 2 or 3 (Z2, 3, far corners). Mice pretreated with norBNI (10 mg/kg, i.p., 24 hr prior) or with

serotonergic p38a deletion (p38aCKOePet) show normal exploration of the interaction zone (IZ).

(B) Quantification of social interaction scores in mice following SDS. Dashed line represents the social interaction scores for unstressed mice (n = 8, *p < 0.05

versus control saline or p38aD/lox, t test).

(C) Place Preference scores following conditioning with U50,488 (2.5 mg/kg) in wild-type, p38aD/lox and p38aCKOePet mice (n = 8–10, ANOVA, p < 0.05 versus

control).

(D) Place Preference scores (means ± SEM following conditioning with U50,488 (2.5mg/kg) in p38awild-type versus p38a D/lox and p38aCKOSERTmice (n = 8–10,

ANOVA, p < 0.05 versus control).

(E) Place Preference scores ± SEM following conditioning with U50,488 (2.5 mg/kg) in wild-type or p38aCKOGFAP mice (n = 6–8).

(F) Swim-stress induced immobility scores for wild-type mice, p38aD/lox, or p38aCKOSERT (data are means ± SEM; ANOVA, *p < 0.01, n = 6–8).

See also Figure S3.
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Figure 4. Disruption of p38a in Serotonergic Neurons Protects against SDS-Induced Reinstatement of Drug Seeking

(A) Representative images of SDS induced phospho-p38-ir in each mouse line. Data show an absence of SDS-induced pp38-ir in TPH-ir cells in both

p38aCKOSERT and p38aCKOePet mice but show an intact increase in pp38-ir in TPH-ir cells of p38a CKOGFAP mice. (Pixel intensities of pp38-ir were quantified

from these and replicate images and shown in Figure S3J.) SDS did not significantly increase pp38-ir in DRN of p38aCKOePet or p38aCKOSERT, whereas pp38-ir

was significantly increased in DRN of p38aCKOGFAP mice.

(B) Mouse place preference scores (±SEM) following cocaine (15 mg/kg, s.c.) conditioning.

(C) Mouse place preference scores (±SEM) after extinction and following social defeat (p < 0.05, ANOVA, Bonferroni post hoc).

(D) Mouse place preference scores following extinction then cocaine priming (15 mg/kg, s.c.) (n = 8–20). See also Figure S4 for additional behavioral charac-

terization.
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p38a MAPK and KOR Modulate SERT Activity
To define the mechanism for the effects of p38a MAPK, we

looked to studies in heterologous gene expression systems

that previously suggested the plasma membrane serotonin

transporter could be a p38 MAPK substrate (Zhu et al., 2005;

Samuvel et al., 2005). Building on in vitro data showing that

p38 MAPK increases SERT activity, we first asked whether the

serotonergic p38a-dependent CPA response was sensitive to

the selective SERT reuptake inhibitor citalopram (Ravna et al.,

2003). Mice were conditioned as previously described with a

KOR agonist and then assayed for preference to the stressor-

paired context. Control mice showed normal place aversion to

the U50,488-paired compartment, whereas citalopram-pre-

treatedmice (15mg/kg, i.p. 30min prior to KOR agonist) showed

significantly less U50,488 place aversion (Figure 5A; ANOVA,

F(2,15) = 4.082, Bonferroni, p < 0.05 versus saline). These behav-

ioral data strongly implicate the regulation of extracellular sero-

tonin as a plausible mechanism for p38a-dependent effects.
To determine if p38a MAPK activation actually modulates

SERT function in vivo, we used rotating disk electrovoltammetry

(RDEV), a validated measure of monoamine transport kinetics

(McElvain and Schenk, 1992; Burnette et al., 1996; Earles and

Schenk, 1998; Hagan et al., 2010), to measure 5HT uptake

rates in synaptosomes isolated from stressed or unstressed

mice. To isolate G protein-coupled receptor-mediated p38a

MAPK activation and to mimic the conditioned aversion para-

digm described above, mice received either saline or U50,488

(2.5 mg/kg, i.p.) 24 hr prior to and again 30 min prior to prepara-

tion of whole-brain synaptosomes. Synaptosomes isolated from

mice injected with KOR agonist (Figure 5C) showed a marked

increase rate of SERT specific 5HT clearance compared with

synaptosomes from control, saline-injected mice (Figures 5B

and 5D). This increase in uptake rate was blocked by in vivo

pretreatment with norBNI (2 3 2 ANOVA, significant effect of

pretreatment, p < 0.05; Figure 5D). We then determined whether

deletion of p38a in serotonergic cells blocked the KOR induced
Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc. 505



Figure 5. Investigation of 5HT Uptake by SERT

(A) Place preference scores (±SEM) following conditioning of wild-type mice treated either with U50,488 (2.5 mg/kg) (U50/Saline), with the selective SERT re-

uptake inhibitor citalopram (CPM) (15 mg/kg, i.p., 30 min prior to U50,488) (U50/CPM), or with citalopram alone (Saline/CPM). Citalopram prior to KOR agonist

significantly blocked U50,488 CPA (ANOVA, p < 0.05, n = 8–10).

(B and C) Representative RDEV traces of 5-HT uptake from paroxetine (red traces) and nonparoxetine (black traces) treated synaptosomes isolated from control

(B) or U50,488 (2.5 mg/kg, i.p. 32)-treated animals (C). Note the larger difference in slope for U50,488 treated than control animals.

(D) Administration of U50,488 (2.5mg/kg, i.p.32, 24 hr apart) to mice, 30min prior to synaptosomal isolation, increased 5-HT uptake by SERT compared to saline

treated controls (n = 10–16, *p < 0.01). This effect of U50,488 was blocked by pretreatment of the mice with norBNI (10 mg/kg).

(E) Administration of U50,488 (2.5 mg/kg, i.p.32), increased serotonin uptake by SERT in synaptosomes generated from p38a+/+, p38aD/lox, and p38a+/+,SERTcre

mice, but not from p38aCKOSERT mice (n = 10–16, *p < 0.05).

(F) Administration of U50,488 (2.5 mg/kg, i.p.32) 30 min prior to preparation of synaptosomes did not significantly increase serotonin uptake by the low-affinity

transporters (n = 10–16).

Neuron

Deletion of p38a Produces Stress Resilience
increase in SERT uptake. Both wild-type (p38a+/+) (t test versus

saline control, p < 0.05) and control Mapk14D/lox mice (t test

versus saline control, p < 0.001) showed a significant U50,488-

mediated increases in SERT uptake as compared to saline

treated animals of the same genotype (Figure 5E). In contrast,

KOR stimulation did not significantly increase 5HT uptake in

p38aCKOSERT (Mapk14D/lox: Slc6a4-Cre) mice (t test versus

control, p < 0.01) (Figure 5E), suggesting that p38a MAPK dele-

tion prevented modulation of SERT activity. Because 5HT can

also be taken up by a low-affinity, high-capacity transporter

(Daws, 2009), we also examined the rate of 5HT uptake in the

combined presence of selective NET, SERT, DAT inhibitors.

The low-affinity transport was not significantly changed by

treatment with KOR agonist in vivo (Figure 5F). Taken together

these results strongly suggest that SERT activity in nerve termi-

nals of serotonergic neurons is positively modulated in a p38a

MAPK-dependent manner.
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p38a MAPK Regulates SERT Cell-Surface Trafficking
To determine if the increase in uptake rate was caused by

increased SERT expression, we isolated synaptosomes and

immunoblotted for SERT in each mouse genotype. Consistent

with previous reports (Samuvel et al., 2005; Zhu et al., 2005),

we found that SERT-ir migrates at both 75 and 98 KDa (Fig-

ure 6A). We confirmed the selectivity of the two different SERT

antibodies by showing an absence of staining in synaptosomes

isolated from SERT knockout mice (Figure 6A) and absence of

SERT-ir in untransfected HEK293 cells, but presence in cells

transfected with cDNA encoding SERT (Figure S5). Total SERT

expression in p38aCKOSERT or p38aCKOεPεt mice was not

significantly different from wild-type mice (Figures 6A and S5).

Using a membrane impermeant biotinylation procedure to

label cell-surface proteins (Samuvel et al., 2005), we next as-

sessed changes in SERT-ir expression on the synaptosomal

surface. SDS (20 min exposure) of wild-type mice significantly



Figure 6. p38a MAPK Is Required for Social Defeat Stress-Induced Cell Surface SERT Trafficking

(A) Representative immunoblot of total SERT levels in the different mouse lines used in this study. Data show both species of SERT (75 and 98 kDa) are present in

these strains and the absence of SERT-ir in the Slc6a4 knockout (SERT-KO) mouse. Actin-ir was used to control for protein loading.

(B) Representative immunoblot of surface SERT expression in biotinylated synaptosomes isolated from unstressed mice (no stress), from mice after SDS, and

from mice pretreated with norBNI (10 mg/kg) 24 hr prior to SDS. (Anti-streptavidin-ir confirms equal protein loading after biotinylation and pull-down.

(C) Quantification of SERT-ir surface expression following SDS of saline-treated wild-type, norBNI-treatedwild-type, and p38aCKOePet mice (*p < 0.05, **p < 0,01,

***p < 0.001, ANOVA, Bonferroni post-hoc).

(D) Quantification of SERT-ir surface expression following U50,488 treatment of wild-type and p38a CKOePet mice. (*p < 0.05, t test). n = 8–10 in replicate, and

each was taken from a separate animal.

(E) Cartoon model depicting p38a MAPK-dependent SERT translocation and decreased extracellular 5HT.

See also Figure S5.
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increased (ANOVA, F(2,24) = 4.7122, p < 0.05) synaptosomal

surface SERT expression (Figure 6), and this increase was

blocked by pretreatment with norBNI (10 mg/kg, i.p.) 1 hr prior

to SDS (Figures 6B and 6C). Furthermore, socially defeated

(20 min exposure) or KOR agonist treated (2.5 mg/kg, 2 3

24 hr, i.p.) p38a CKOePet mice did not show stress-induced

increases in surface SERT expression, defining a critical role

for p38a MAPK in SERT surface trafficking following stress and

KOR activation (Figures 6C and 6D). The proposed mechanism

of p38a MAPK-SERT interaction is illustrated in Figure 6E.

DISCUSSION

In this study, we present evidence that p38aMAPK is an essen-

tial mediator of stress-induced adverse behavioral responses

through regulation of serotonergic neuronal functioning. Our

data demonstrate that p38a expression in 5HT neural circuits

is required for local regulatory control of serotonin transport

that ultimately controls behavioral responses including social

avoidance, relapse of drug seeking, and the dysphoria-like

responses underlying aversion. These results are important

because they implicate a critical requirement for p38a MAPK

signaling in 5HT neuronal function during stress, and demon-

strate that p38a MAPK, in spite of its ubiquitous expression

profile, has the ability to specifically regulate selected down-

stream targets to shape behavioral output. The evidence pre-

sented here strongly links molecular events, physiological

responses and behavioral output through p38a MAPK signaling

actions in serotonergic neurons.

The dorsal raphe nucleus (DRN) contains a major cluster of

serotonergic neurons that project broadly throughout the brain

(Wylie et al., 2010). Its circuits have impact on mood regulation

and nociception (Scott et al., 2005; Zhao et al., 2007). However,

the DRN is not homogeneous and contains a diversity of cell

types whose local circuit interactions and projections are not

completely defined (Wylie et al., 2010). Expression of the tran-

scription factor Pet1 during development is highly correlated

with the production of TPH, the rate-limiting enzyme in 5HT

synthesis (Liu et al., 2010; Scott et al., 2005). GABA and glutama-

tergic inputs are known to regulate tonic DRN neuronal activity

(Lemos et al., 2011; Tao and Auerbach, 2000), although how

these different systems are integrated remains an active area of

study. All serotonergic cell bodies express SERT perisynaptically

at their terminal regions to clear extracellular 5HT following trans-

mitter release (Murphy and Lesch, 2008). Using the selective

expression of Cre driven by SERT and Pet1 promoters, we found

that thegenetic inactivationof p38aMAPK inPet1- andSERT-ex-

pressing cells causeda lossof p38aandpp38 staining selectively

in TPH ir-positive cells of DRN.Wewere not surprised to find that

expression of Cre driven by the SERT promoter was widespread

(Figure S3) because transient SERT expression during brain

development had previously been noted (Gaspar et al., 2003;

Narboux-Nême et al., 2008). Nevertheless, the SERT-Cre mice

provide important corroborative results consistent with the

effects of two other tools we used to excise p38a in serotonergic

neurons. The selectivity of Cre expression and subsequent p38a

excision by AAV1-CreGFP, SERT-Cre or ePet1-Cre are demon-

strably different. AAV1-CreGFP acts on all DRN cells at the site
508 Neuron 71, 498–511, August 11, 2011 ª2011 Elsevier Inc.
of injection; SERT-Cre expression was not restricted to DRN;

and ePet1-Cre is expressed in TPH-ir neurons of the median

raphe as well as DRN. Nevertheless, the consistent behavioral

results suggest the p38a deletion in the common TPH-ir cells of

DRN mediates these effects. In addition, although p38-depen-

dent stress responses also include activation, hypertrophy, and

proliferation of astrocytes (Xu et al., 2007), we found no evidence

that activation of p38a in GFAP-ir astrocytes was involved in the

behavioral responses assessed. The lack of effect of p38a dele-

tion in astrocytes was surprising since other investigators have

noted that many aspects of the brain’s response to stress

resemble inflammation (Wager-Smith and Markou, 2011).

The conditional deletion of p38a and lack of compensation by

p38b caused profound behavioral effects in models of stress-

induced depression and addiction and establishes a distinct

role of the p38a isoform over p38b isoforms in dorsal raphe

function. The selective role for the p38a MAPK isoform was

unexpected but is consistent with prior reports suggesting that

the a and b isoforms may be expressed in different subcellular

compartments (Lee et al., 2000). In addition, differences in func-

tional roles are consistent with isoform differences in other

signaling kinases including the various PKC isoforms (Hauben-

sak et al., 2010; Sajikumar and Korte, 2011).

The 5HT transmitter system inmammalian brain is known to be

an essential modulator of homeostatic responses that control

emotional behaviors and the interaction of animals with their

environments (Holmes, 2008; Ansorge et al., 2004; Gingrich

and Hen, 2001). It is widely accepted that 5HT function is neces-

sary for the normal functioning of neural circuits required for

adult emotional behaviors (Gaspar et al., 2003). However, few

studies have identified the critical kinases involved in seroto-

nergic function, and few have established how disruption of

signal transduction in serotonergic neurons impacts emotional

behaviors. Pharmacological blockade of p38 MAPK has been

suggested to prevent conditioned place aversion and learned

helplessness in animal models of depression (Bruchas et al.,

2007). Furthermore, expression of mutant kappa opioid recep-

tors that are ineffective at activating p38 MAPK prevents place

aversion in behavioral assays (Land et al., 2009). However,

a definitive role for p38 MAPK in behavioral regulation following

stress had not previously been directly demonstrated.

Rodent models of social interaction have gained acceptance

by neurobiologists as useful models of depression-like behavior

since they respond to antidepressant compounds, and the

DSM-IV criteria includes decreasedmotivation for social interac-

tion as major component of human depression (Berton et al.,

2006; Beidel et al., 2010). p38a MAPK may represent the first

kinasemediator in a series of neurochemical events that underlie

the chronic behavioral changes. The block of social avoidance

by KOR antagonist further establishes the dynorphin system as

a critical part of the stress response and strengthens the concept

that this system may be a novel therapeutic target to promote

stress resilience (Land et al., 2008, 2009; Bruchas et al., 2010).

The regulation of extracellular serotonin levels and subsequent

postsynaptic effects have long been thought to be a primary

component of depression and anhedonic behavioral responses

in humans (Haenisch and Bönisch, 2011); however, few reports

have demonstrated that interruption of the signal transduction
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that controls SERT protects against the depressive-like effects

of stress. Although regulation of SERT by p38 had been impli-

cated based on in vitro studies (Zhu et al., 2005; Samuvel

et al., 2005), the demonstration that stress-induced p38a

MAPK causes translocation of SERT to the plasma membrane

in brain provides a clear molecular explanation for stress-

induced dysphoria. The data presented here show that in

serotonin neurons, p38a MAPK acts to directly influence SERT

trafficking and ultimately to increase the rate of serotonin reup-

take. In conclusion, understanding the molecular and cellular

mechanisms that control stress-induced behaviors delineates

the neurobiological mechanisms involved in depression and

addiction-like behaviors, while also providing insight to potential

therapeutic targets. Although prior studies have demonstrated

a role for p38a MAPK in cellular development and apoptotic

mechanisms, its role in the regulation of mood disorders and

addiction risk was not previously appreciated. Furthermore,

although antidepressant efficacies of drugs that inhibit the

plasma membrane serotonin transporter are clear, the profound

effects of stress on the serotonin system function defined by this

study provide key molecular insight into the underlying mecha-

nisms of stress-vulnerability and resilience.

EXPERIMENTAL PROCEDURES

For detailed Experimental Procedures, see Supplemental Information.

Animals

Experimental procedures were carried out in accordance with the USPHS

Guide for Care and Use of Laboratory Animals and were approved by the Insti-

tutional Animal Care and Use Committee at the University ofWashington. Male

C57BL/6 mice (20–30 g) were group-housed, four to a cage, in ventilated

mouse cages (Thoren Caging Systems, Hazelton, PA) within the Animal Core

Facility at the University of Washington, given access to food pellets and water

ad libitum, and maintained in specific pathogen-free housing.

Generation of Serotonin-Specific Conditional Knockout Mice

Breeding and genotyping procedures were as described in the Supplemental

Information.

Behavior

Conditioned Place Aversion

Mice were trained in an unbiased, balanced three-compartment conditioning

apparatus as described (Land et al., 2009; Bruchas et al., 2007).

Stress-Induced Social Avoidance and Stress-Induced Cocaine

Reinstatement

Stress-induced social avoidance and stress-induced cocaine reinstatement

was performed as described in the Supplemental Information.

Viral Preparation and Local Intracranial Injections

Viral preparation and local intracranial injections were performed as previously

reported (Zweifel et al., 2008; Land et al., 2009) and described more fully in the

Supplemental Information.

Immunohistochemistry

Immunohistochemistry was performed as previously described (Land et al.,

2009; Bruchas et al., 2007) and described more fully in the Supplemental

Information.

Synatosomes

Synatosomes were prepared from whole brain according to published proto-

cols (Hagan et al., 2010; Ramamoorthy et al., 2007) and describedmore fully in

the Supplemental Information.
Rotating Disk Electrovoltammetry (RDEV)

RDEV was used to measure initial velocities of serotonin (5-HT) transport into

mouse synaptosomal preparations as previously described (Hagan et al.,

2010) and described more fully in the Supplemental Information.

Data Analysis/Statistics

Data are expressed as means ± SEM. Data were normally distributed, and

differences between groups were determined using independent t tests or

one-way ANOVA, or two-way ANOVAs followed by post hoc Bonferroni

comparisons if the main effect was significant at p < 0.05. Statistical analyses

were conducted using GraphPad Prism (version 4.0; GraphPad) or SPSS

(version 11.0; SPSS).

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.neuron.2011.06.011.
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